Standardization of extracellular vesicle measurements by flow cytometry

Edwin van der Pol

November 19th, 2019

Outline

- Small particles: extracellular vesicles (EVs)
- Flow cytometry limitations
- Calibration
- Solid beads are misleading
- Swarm detection
- Standardisation of EV concentration measurements

Extracellular vesicles (EVs)

Extracellular vesicles (EVs)

- cells release vesicles:
 biological nanoparticles with receptors, DNA, RNA
- specialized functions
- clinically relevant

EV-based liquid biopsy

Hematology parameter	Concentration (vesicles mL^{-1})
Platelet vesicle count	$2.3 - 6.2 \cdot 10^9$
Erythrocyte vesicle count	$7.0 - 8.6 \cdot 10^{10}$
Reticulocyte vesicle count	$3.9 - 15.6 \cdot 10^8$
Leukocyte vesicle count	$6.2 - 16.4 \cdot 10^7$
Total vesicle count	$7.3 - 9.4 \cdot 10^{10}$

Problem: EVs are small and heterogeneous

Flow cytometry

Image: semrock.com

Problem 1: arbitrary units

same population of erythrocyte EVs

Problem 2: instruments differ in sensitivity

Clinical reality

- reported concentrations of blood plasma EV differ >10⁶-fold
- clinical data cannot be compared
- standardization required

Solution

Calibrate!

Thermometer: no calibration

- Data interpretation
 - What is the temperature?
- Data comparison
 - ➤ Is the temperature equal?

Thermometer: measuring reference values

- Data interpretation
 - What is the temperature?
- Data comparison
 - > Is the temperature equal?

Thermometer: calibration

- Data interpretation
 - What is the temperature?
 50 °C
- Data comparison
 - ➤ Is the temperature equal? Yes!

Flow cytometer: no calibration

Flow cytometer: measuring reference materials

- Data interpretation
 - What is the EV size?
 300 mm?
- Data comparison
 - Do we study equal EV sizes?
 Yes?

Flow cytometer: calibration

- Data interpretation
 - What is the EV size? 1,160 nm & 500 nm
- Data comparison
 - Do we study equal EV sizes?
 No!

EV size gate based on polystyrene beads

- Introduced in 2008
- Common practice
- Bad practice

Relate scatter to diameter of beads

Relate scatter to diameter of beads

Relate scatter to diameter of beads

- data polystyrene beads
- data silica beads
- theory polystyrene spheres $(n_{polystyrene} = 1.605)$
- theory silica spheres
 (n_{silica} = 1.445)

Relate scatter to diameter of EVs

Particles below detection limit are detected

Swarm detection

Outline

- Small particles: extracellular vesicles (EVs)
- Flow cytometry limitations
- Calibration
- Solid beads are misleading
- Swarm detection
- Standardisation of EV concentration measurements

Study comprises 33 sites (64 instruments) worldwide

Sensitivity of 46 flow cytometers in the field

= unable to detect 400 nm fluorescent polystyrene beads

Reproducibility of 1200-3000 nm EVs, 31 FCMs

	CV(%)
Gate on beads	139%
Gate on EV size with	81%
light scatter theory	

Requires improvement!

Outlook: METVES II

- one bead to calibrate them all
 - > fluorescence
 - 100 100,000 fluorescent molecules
 - number concentration
 - 10⁹ 10¹² particles mL⁻¹
 - scatter
 - discrete diameters between 50 nm 1,000 nm
 - refractive index between 1.37 1.42

METVES II consortium

- National metrology institutes
 - BAM, LGC, LNE, PTB, VSL, VTT
- Academic partners
 - > AMC, UH, MTA TTK
- Industry
 - > BD, Exometry, PolyAn

Physikalisch

LGC

Example: hollow organosilica beads (HOBs)

Anticipated outcome comparison study

- Per lab:
 - flow cytometry
 - reference materials
 - biological test samples
 - fully automated calibration & data analysis

Summary

- Extracellular vesicles (EVs): small and heterogeneous
- Flow cytometry limitation: arbitrary units
- Calibrate flow, fluorescence & scatter!
- Solid bead gates are misleading
- Avoid swarm detection
- Standardize

Acknowledgements

- Amsterdam University Medical Centers
 - Vesicle Observation Center
 - Biomedical Engineering & Physics
 - Laboratory Experimental Clinical Chemistry
- Hungarian Academy of Sciences
 - Zoltan Varga

- Funding
 - **EURAMET**
 - > ISTH
 - NWO-TTW

Relevant websites

edwinvanderpol.com

evflowcytometry.org

exometry.com

metves.eu

nlsev.nl

