Supporting information 3 MIFlowCyt checklist of Filtration experiments, "Removal of platelets from blood plasma to improve the quality of extracellular vesicle research"

Requirement	Please Include Requested Information						
1.1. Purpose	The aim of the flow cytometry experiment was to compare the						
	concentrations of platelets stained with CD61-APC in double						
	centrifuged plasma before and after filtration with a polycarbonate						
	membrane filter having a 0.8-µm pore diameter. We hypothesized						
	that the use of a polycarbonate filter would remove platelets						
	effectively.						
1.2. Keywords	Platelets, plasma, filtration						
1.3. Experiment variables	Filtration of the samples using a polycarbonate membrane filter						
	having a 0.8-µm pore diameter.						
1.4. Organization name and	Amsterdam University Medical Centers						
address	Location Academic Medical Centre						
	Meibergdreef 9						
	1105 AZ Amsterdam						
	The Netherlands						
1.5. Primary contact name	Britta A. Bettin, <u>b.a.bettin@amsterdamumc.nl</u>						
and email address							
1.6. Date or time period of	7 th October 2020						
experiment							
1.7. Conclusions	Double centrifugation followed by filtration using a polycarbonate						
	membrane filter having a 0.8-µm pore diameter resulted in a						
	146-fold lower platelet concentration compared to double						
	centrifugation without filtration.						
1.8. Quality control measures	All samples were measured manually in Falcon [®] tubes						
	(BDAA352052 VWR, Radnor, PA). The flow rate was						
	determined using TruCount beads (BD Biosciences, San Jose,						
	CA).						
1.9 Other relevant experiment	The experiment was conducted within one day.						
information							
2.1.1.1. Sample description	Freshly prepared double-centrifuged plasma (section 2.1.1.2) from						
	a healthy volunteer (section 2.1.1.3).						
2.1.1.2. Biological sample	Blood was collected from one healthy individual who denied						
source description	having a disease or using drugs and/or medication. Venous blood						
	was collected using a 21-Gauge needle, and the first 3.5 mL of						
	blood was discarded. One tube with 6 mL of EDTA blood (BD						
	Biosciences) was collected, mixed gently, and processed within						
	15 minutes. To prepare plasma, the blood collection tube was						
	double centrifuged using a Rotina 380 R equipped with a swing-						
	out rotor and radius of 155 mm (Hettich Zentrifugen, Tuttlingen,						
	Germany). Whole blood was double centrifuged at 2,500 g, 15						

	minutes, 20°C, acceleration speed 9, deceleration speed 1. Plasma						
	was collected 10 mm above the buffy coat with a plastic Pasteur						
	pipette (VWR, Radnor, PA) and transferred into 15-mL						
	polypropylene centrifuge tubes (Greiner Bio-One B.V., Alphen						
	aan den Rijn, The Netherlands). Subsequently, plasma was						
	centrifuged at 2,500 g, 15 minutes, 20°C, acceleration speed 9,						
	deceleration speed 1. Plasma was collected to 10 mm above the						
	pellet, transferred into a new 15-mL polypropylene centrifuge						
	tube (Greiner Bio-One B.V.), mixed by pipetting, and further						
	transferred to 1.5-mL low protein binding Eppendorf tubes						
	(Thermo Fisher Scientific, Waltham, MA). To further reduce the						
	concentration of platelet contaminants in plasma, polycarbonate						
	membrane filters having a 0.8-um pore diameter and a 2.5-cm						
	filter diameter (IsoporeTM, Merck Millipore, Darmstadt,						
	Germany) were used. The concentration of platelets were						
	measured in fresh unfiltered and filtered plasma						
2 1 1 3 Biological sample	Healthy human volunteer						
source organism description							
2.2 Sample characteristics	Plasma is expected to contain detectable extracellular vesicles.						
	lipoproteins proteins, and platelets.						
2.3. Sample treatment	Plasma was either double centrifuged, or double centrifuged						
description	followed by filtration (section 2.1.1.2).						
2.4. Fluorescence reagent(s)	Table S1 contains an overview of the staining reagents. Prior to						
description	staining, samples were diluted 2.75-fold in HEPES buffer. HEPES						
	buffer was 137 mmol/L NaCl (6404, Merck Millipore),						
	20 mmol/L Hepes (10110, Merck Millipore), 5.6 mmol/L						
	D-glucose (8337, Merck Millipore), 0.1%, BSA (A9647, 0.1%,						
	Sigma-Aldrich, St. Louis, MO, 3.3 mmol/L fc NaH ₂ PO ₄ .H ₂ O						
	(6345, Merck Millipore), 2.7 mmol/L fc, KCl (24936, Merck						
	Millipore), and 1 mmol/L fc MgCl ₂ .6H ₂ O (5833, Merck						
	Millipore) in MiliQ (Baxter, TKF7114, Deerfield, IL).						
	To remove antibody aggregates, anti-human CD61-APC antibody						
	(17-0619-42, eBioscience; clone VI-PL2; final concentration 8.33						
	μ g/mL) was diluted in Dulbecco's Phosphate-buffered saline						
	(DPBS, 21-031-CV, Corning, NY) and centrifuged at $18,890 \cdot g$						
	for 5 minutes. To measure the concentration of platelets, 20 μ L						
	diluted plasma was incubated with 30 μ L HEPES buffer and 5 μ L						
	antibody and kept in the dark for 30 minutes at room temperature.						
	After 30 minutes, samples were 9-fold post-diluted and fixated						
	with 200 µL HEPES/0.3 % paraformaldehyde (PFA; 104005,						
	Merck Millipore) in the case of plasma and 41-fold HEPES/0.3 %						
	PFA in the case of filtered plasma. Half the volume of plasma was						
	filtered using a polycarbonate membrane with a 0.8-µm pore						
	diameter and the other half was used as a control. To allow C_{1}						
	fixation, the HEPES/0.3 % PFA diluted samples were incubated						
	for 1 nour in the dark at room temperature. Afterward, 450 μ L of						
	prasma of 500 µL of intered plasma were transferred into TruCount heads yiels (RD Biosciences)						
3.1 Instrument manufacturar	BD Biosciences						
3.2 Instrument model	FACSCantoTM II						
J.Z. Instrument mouel							

3.3. Instrument configuration	Detector voltages were set using CS&T beads (BD custom made,						
and settings	lot. 32272). Stained samples were measured for 120 seconds at a						
	flow rate of 60 µL/min on an FACS Canto II, BD Biosciences,						
	equipped with a 405-nm laser, 488-nm laser, and 633-nm laser.						
	The trigger threshold was set at FSC 200 arbitrary units. For FSC						
	and SSC, the PMT voltages were 233 V and 373 V, respectively.						
	APC signals were collected with the 638-D Red (Peak) detector						
	(long pass 660/20 nm filter, PMT voltage 532 V). TruCount beads						
	were used according to manufacturer's instructions to determine						
	the flow rate.						
4.1. List-mode data files	A summary of all flow cytometry scatter plots and gates applied						
	are available via https://doi.org/10.6084/m9.figshare.19137194						
4.2. Compensation	No compensation was required because no fluorophore						
description	combinations were used that have overlapping emission spectra.						
4.3. Data transformation	Data were not transformed (or calibrated), because platelets were						
details	recognized and gated based on their relative fluorescence and light						
	scattering intensity and a comparison with daily measured whole						
	blood samples.						
4.4.1. Gate description	A gate was applied manually using FlowJo (v 10.7.1, FlowJo,						
	Ashland, OR, USA). To select platelets, the gate was set based on						
	the measured CD61-APC fluorescence intensities and light						
	scattering intensities. Platelets were identified based on a						
	comparison with daily measured whole blood samples. The gate						
	was set in a triangular shape around the platelet population. An						
	example of the gating strategy can be found in Figure S3.1.						
4.4.2. Gate statistics	The number of positive events was corrected for flow rate,						
	measurement time and dilutions performed during sample						
	preparation.						
4.4.3. Gate boundaries	On overview of all gates can be found in the compressed data						
	summary file via https://doi.org/10.6084/m9.figshare.19137194						

APC: allophycocyanin; CD: cluster of differentiation; EDTA: Ethylenediamine tetraacetic acid; FSC: forward scattering; PMT: photomultiplier tube; SSC: side scattering.

Figure S3.1 Gating strategy of platelets measured by the FACS Canto II. The plots show side scattering vs. APC fluorescence. (A) Platelet gate after the first centrifugation step. (B) Platelet gate after double centrifugation. (C) double centrifuged plasma after filtration.

Table S3.1: Overview of staining reagents. Characteristics being measured, analyte, analyte detector, reporter, isotype, clone, concentration, manufacturer, catalog number and lot number of used staining reagents. The antibody concentration during measurements was 11.3-fold lower than the antibody concentration during staining

Characteristic measured	Analyte	Analyte detector	Reporter	Isotype	Clone	Concentration during staining (ug mL ⁻¹)	Manufacturer	Catalog number	Lot number
Integrin	Human CD61	Anti-human CD61 antibody	APC	IgG1	YI-PL2	50	Invitrogen	17-0619-42	2062626

APC: allophycocyanin; IgG: Immunoglobulin G.