Determination of the refractive index of vesicles using nanoparticle tracking analysis

Edwin van der Pol

June 29th, 2013

Biomedical Engineering and Physics Laboratory Experimental Clinical Chemistry Academic Medical Center, Amsterdam, The Netherlands

Disclosures of: Edwin van der Pol

Employment	No conflict of interest to disclose
Research support	No conflict of interest to disclose
Scientific advisory board	No conflict of interest to disclose
Consultancy	No conflict of interest to disclose
Speakers bureau	No conflict of interest to disclose
Major stockholder	No conflict of interest to disclose
Patents	No conflict of interest to disclose
Honoraria	No conflict of interest to disclose
Travel support	No conflict of interest to disclose
Other	No conflict of interest to disclose

Presentation includes discussion of the following off-label use of a drug or medical device: N/A

Introduction to light scattering

- light illuminating a vesicle is partly absorbed and partly scattered (deflected)
- Iight scattering depends on size and refractive index

Introduction to the refractive index

- the refractive index
 - is defined as $n = c_{vacuum} / v_{medium}$
 - affects refraction and reflection

Motives of studying the refractive index

200 nm

- new label-free parameter
 - cellular origin
 - o distinguish vesicles from contamination
- relate light scattering to vesicle diameter
- detection range

* Konokhova et al., J. Biomed. Opt. (2012)

Nanoparticle tracking analysis (NTA)

Diameter (nm)

- determine size and concentration of vesicles
- additional parameters: <u>light scattering</u> or fluorescence

Method – measure light scattering by NTA

- no pixel saturation
- video processing by NanoSight NTA 2.3
 - Intensity corrected for camera shutter time and gain

Polystyrene data

- Polystyrene data
 - Polystyrene Mie calculation
- Silica data
 - Silica Mie calculation
- 203-nm polystyrene beads
- 90-nm silica beads

- 203-nm polystyrene beads
- 90-nm silica beads

Validate method using beads

Accuracy: 1% Coefficient of variation: 3% Accuracy: 3% Coefficient of variation: 5%

Scattering power versus diameter of vesicles

- Plasma vesicles
- Urine vesicles

Refractive index distribution of vesicles by NTA

Conclusions

NTA can be used to assess the refractive index
new reference materials have to be developed to calibrate optical instruments for vesicle detection

AS 14.2, Tuesday 13:45, Mondriaan II: Physical interpretation of the size and concentration of vesicles

Acknowledgements

- Academic Medical Center
 - Mitra Almasian
 - René Berckmans
 - Anita Böing
 - Frank Coumans
 - Anita Grootemaat
 - Najat Hajji
 - Chi Hau
 - Richelle Hoveling
 - Ton van Leeuwen
 - Rienk Nieuwland
 - Marianne Schaap
 - Guus Sturk
 - Aude Vernet
 - Yuana Yuana

- University of Oxford
 - Chris Gardiner
- University of Birmingham
 - Paul Harrison
- NanoSight Ltd.
 - Patrick Hole
 - Andrew Malloy
 - Jonathan Smith

More on microparticle detection:

edwinvanderpol.com