Articles

The list below contains articles to which I contributed. For metrics, please check my profile at Google Scholar or Publons.

2020

42
Reliable measurements of extracellular vesicles by clinical flow cytometry
Martine Kuiper, Arthur van de Nes, Rienk Nieuwland, Zoltan Varga, and Edwin van der Pol
American Journal of Reproductive Immunology, in press.

Cite

ACS
Kuiper, M.; van de Nes, A.; Nieuwland, R.; Varga, Z.; van der Pol, E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am. J. Reprod. Immunol., in press.
AMA
Kuiper M, van de Nes A, Nieuwland R, Varga Z, van der Pol E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am J Reprod Immunol. In press.
DOI
IEEE
M. Kuiper, A. van de Nes, R. Nieuwland, Z. Varga, and E. van der Pol, “Reliable measurements of extracellular vesicles by clinical flow cytometry,” Am. J. Reprod. Immunol., in press.
NLM
Kuiper M, van de Nes A, Nieuwland R, Varga Z, van der Pol E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am J Reprod Immunol. In press.
BibTeX     EndNote     RefMan ×
41
A systematic approach to improve scatter sensitivity of a flow cytometer for detection of extracellular vesicles (pdf, 2 MB)
Leonie de Rond, Edwin van der Pol, Paul R. Bloemen, Tina van den Broeck, Ludo Monheim, Rienk Nieuwland, Ton G. van Leeuwen, and Frank A.W. Coumans
Cytometry Part A 97(6), 582-91 (2020)

Supplements Cytometry Part A 97(6), 582-91 (2020)

×Suppl. 1: Supplemental information (doc, <1 MB)
Suppl. 2: Supplemental information (docx, 1 MB)

Cite

ACS
de Rond, L.; van der Pol, E.; Bloemen, P. R.; van den Broeck, T.; Monheim, L.; Nieuwland, R.; van Leeuwen, T. G.; Coumans, F. A. A systematic approach to improve scatter sensitivity of a flow cytometer for detection of extracellular vesicles. Cytom. Part. A 2020, 97 (6), 582-591.
AMA
de Rond L, van der Pol E, Bloemen PR, et al. A systematic approach to improve scatter sensitivity of a flow cytometer for detection of extracellular vesicles. Cytom Part A. 2020;97(6):582-591.
DOI
10.1002/cyto.a.23974
IEEE
L. de Rond et al., “A systematic approach to improve scatter sensitivity of a flow cytometer for detection of extracellular vesicles,” Cytom. Part. A, vol. 97, no. 6, pp. 582-591, Jun. 2020.
NLM
de Rond L, van der Pol E, Bloemen PR, van den Broeck T, Monheim L, Nieuwland R, et al. A systematic approach to improve scatter sensitivity of a flow cytometer for detection of extracellular vesicles. Cytom Part A. 2020 Jun;97(6):582-91.
BibTeX     EndNote     RefMan ×
40
Cancer-ID: towards identification of cancer by tumor-derived extracellular vesicles in blood (pdf, 2 MB)
Linda G. Rikkert, Pepijn Beekman, Jaap Caro, Frank A.W. Coumans, Agustin Enciso Martinez, Guido Jenster, Séverine Le Gac, Wooje Lee, Ton G. van Leeuwen, Gyllion B. Loozen, Afroditi Nanou, Rienk Nieuwland, Herman L. Offerhaus, Cees Otto, D. Michiel Pegtel, Melissa C. Piontek, Edwin van der Pol, Leonie de Rond, Wouter H. Roos, Richard B.M. Schasfoort, Marca H.M. Wauben, Han Zuilhof, and Léon W.M.M. Terstappen
Frontiers in Oncology 10, 608 (2020)

Cite

ACS
Rikkert, L. G.; Beekman, P.; Caro, J.; Coumans, F. A. W.; Enciso Martinez, A.; Jenster, G.; Le Gac, S.; Lee, W.; van Leeuwen, T. G.; Loozen, G. B.; et al. Cancer-ID: towards identification of cancer by tumor-derived extracellular vesicles in blood. Front. Oncol. 2020, 10, 608.
AMA
Rikkert LG, Beekman P, Caro J, et al. Cancer-ID: towards identification of cancer by tumor-derived extracellular vesicles in blood. Front Oncol. 2020;10:608.
DOI
10.3389/fonc.2020.00608
IEEE
L. G. Rikkert et al., “Cancer-ID: towards identification of cancer by tumor-derived extracellular vesicles in blood,” Front. Oncol., vol. 10, pp. 608, Jun. 2020.
NLM
Rikkert LG, Beekman P, Caro J, Coumans FAW, Enciso Martinez A, Jenster G, et al. Cancer-ID: towards identification of cancer by tumor-derived extracellular vesicles in blood. Front Oncol. 2020 Jun;10:608.
BibTeX     EndNote     RefMan ×
39
MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments (pdf, 3 MB)
Joshua A. Welsh, Edwin van der Pol, Ger J.A. Arkesteijn, Michel Bremer, Alain Brisson, Frank Coumans, Françoise Dignat-George, Erika Duggan, Ionita Ghiran, Bernd Giebel, André Görgens, An Hendrix, Romaric Lacroix, Joanne Lannigan, Sten F.W.M. Libregts, Estefanía Lozano-Andrés, Aizea Morales-Kastresana, Stephane Robert, Leonie de Rond, Tobias Tertel, John Tigges, Olivier de Wever, Xiaomei Yan, Rienk Nieuwland, Marca H.M. Wauben, John P. Nolan, and Jennifer C. Jones
Journal of Extracellular Vesicles 9, 1713526 (2020)

Supplement Journal of Extracellular Vesicles 9, 1713526 (2020)

×Suppl. 1: Supplemental information (xlsx, <1 MB)

Cite

ACS
Welsh, J. A.; van der Pol, E.; Arkesteijn, G. J. A.; Bremer, M.; Brisson, A.; Coumans, F.; Dignat-George, F.; Duggan, E.; Ghiran, I.; Giebel, B.; et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles 2020, 9, 1713526.
AMA
Welsh JA, van der Pol E, Arkesteijn GJA, et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles. 2020;9:1713526.
DOI
10.1080/20013078.2020.1713526
IEEE
J. A. Welsh et al., “MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments,” J. Extracell. Vesicles, vol. 9, pp. 1713526, Feb. 2020.
NLM
Welsh JA, van der Pol E, Arkesteijn GJA, Bremer M, Brisson A, Coumans F, et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles. 2020 Feb;9:1713526.
BibTeX     EndNote     RefMan ×
38
Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles (pdf, 1 MB)
Agustin Enciso-Martinez, Edwin van der Pol, Aufried T.M. Lenferink, Leon W.M.M. Terstappen, Ton G. van Leeuwen, and Cees Otto
Nanomedicine: Nanotechnology, Biology and Medicine 24, 102109 (2020)

Supplement Nanomedicine: Nanotechnology, Biology and Medicine 24, 102109 (2020)

×Suppl. 1: Size distribution of PC3-derived extracellular vesicles (pdf, 1 MB)

Cite

ACS
Enciso-Martinez, A.; van der Pol, E.; Lenferink, A. T. M.; Terstappen, L. W. M. M.; van Leeuwen, T. G.; Otto, C. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine 2020, 24, 102109.
AMA
Enciso-Martinez A, van der Pol E, Lenferink ATM, Terstappen LWMM, van Leeuwen TG, Otto C. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine. 2020;24:102109.
DOI
10.1016/j.nano.2019.102109
IEEE
A. Enciso-Martinez, E. van der Pol, A. T. M. Lenferink, L. W. M. M. Terstappen, T. G. van Leeuwen, and C. Otto, “Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles,” Nanomedicine, vol. 24, pp. 102109, Feb. 2020.
NLM
Enciso-Martinez A, van der Pol E, Lenferink ATM, Terstappen LWMM, van Leeuwen TG, Otto C. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine. 2020 Feb;24:102109.
BibTeX     EndNote     RefMan ×
37
Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering (pdf, 3 MB)
Agustin Enciso-Martinez, Edwin van der Pol, Chi M. Hau, Rienk Nieuwland, Ton G. van Leeuwen, Leon W.M.M. Terstappen, and Cees Otto
Journal of Extracellular Vesicles 9, 1730134 (2020)

Supplement Journal of Extracellular Vesicles 9, 1730134 (2020)

×Suppl. 1: Supplemental information (docx, 2 MB)

Cite

ACS
Enciso-Martinez, A.; van der Pol, E.; Hau, C. M.; Nieuwland, R.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J. Extracell. Vesicles 2020, 9, 1730134.
AMA
Enciso-Martinez A, van der Pol E, Hau CM, et al. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J Extracell Vesicles. 2020;9:1730134.
DOI
10.1080/20013078.2020.1730134
IEEE
A. Enciso-Martinez et al., “Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering,” J. Extracell. Vesicles, vol. 9, pp. 1730134, Feb. 2020.
NLM
Enciso-Martinez A, van der Pol E, Hau CM, Nieuwland R, van Leeuwen TG, Terstappen LWMM, et al. Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J Extracell Vesicles. 2020 Feb;9:1730134.
BibTeX     EndNote     RefMan ×
36
Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction (pdf, 1 MB)
Aleksandra Gasecka, Rienk Nieuwland, Monika Budnik, Françoise Dignat-George, Ceren Eyileten, Paul Harrison, Zenon Huczek, Agnieszka Kapłon-Cieślicka, Romaric Lacroix, Grzegorz Opolski, Kinga Pluta, Edwin van der Pol, Marek Postuła, Aurélie Leroyer, Pia Siljander, Auguste Sturk, and Krzysztof J. Filipiak
Platelets 31(1), 26-2 (2020)

Cite

ACS
Gasecka, A.; Nieuwland, R.; Budnik, M.; Dignat-George, F.; Eyileten, C.; Harrison, P.; Huczek, Z.; Kapłon-Cieślicka, A.; Lacroix, R.; Opolski, G.; et al. Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction. Platelets 2020, 31 (1), 26-32.
AMA
Gasecka A, Nieuwland R, Budnik M, et al. Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction. Platelets. 2020;31(1):26-32.
DOI
10.1080/09537104.2018.1557616
IEEE
A. Gasecka et al., “Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction,” Platelets, vol. 31, no. 1, pp. 26-32, Jan. 2020.
NLM
Gasecka A, Nieuwland R, Budnik M, Dignat-George F, Eyileten C, Harrison P, et al. Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction. Platelets. 2020 Jan;31(1):26-2.
BibTeX     EndNote     RefMan ×
35
Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel (pdf, 1 MB)
Aleksandra Gasecka, Rienk Nieuwland, Monika Budnik, Françoise Dignat-George, Ceren Eyileten, Paul Harrison, Romaric Lacroix, Aurélie Leroyer, Grzegorz Opolski, Kinga Pluta, Edwin van der Pol, Marek Postuła, Jolanta M. Siller‐Matula, and Krzysztof J. Filipiak
Journal of Thrombosis and Haemostasis 18(3), 609-23 (2020)

Supplements Journal of Thrombosis and Haemostasis 18(3), 609-23 (2020)

×Suppl. 1: MIFlowCyt-EV (pdf, 1 MB)
Suppl. 2: Supplementary information (pdf, 1 MB)

Cite

ACS
Gasecka, A.; Nieuwland, R.; Budnik, M.; Dignat-George, F.; Eyileten, C.; Harrison, P.; Lacroix, R.; Leroyer, A.; Opolski, G.; Pluta, K.; et al. Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. J. Thromb. Haemost. 2020, 18 (3), 609-623.
AMA
Gasecka A, Nieuwland R, Budnik M, et al. Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. J Thromb Haemost. 2020;18(3):609-623.
DOI
10.1111/jth.14689
IEEE
A. Gasecka et al., “Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel,” J. Thromb. Haemost., vol. 18, no. 3, pp. 609-623, Jan. 2020.
NLM
Gasecka A, Nieuwland R, Budnik M, Dignat-George F, Eyileten C, Harrison P, et al. Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. J Thromb Haemost. 2020 Jan;18(3):609-23.
BibTeX     EndNote     RefMan ×

2019

34
P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets (pdf, 1 MB)
Aleksandra Gasecka, Rienk Nieuwland, Edwin van der Pol, Najat Hajji, Agata Ćwiek, Kinga Pluta, Michał Konwerski, and Krzysztof J. Filipiak
Cardiology Journal 26(6), 782-9 (2019)

Cite

ACS
Gasecka, A.; Nieuwland, R.; van der Pol, E.; Hajji, N.; Ćwiek, A.; Pluta, K.; Konwerski, M.; Filipiak, K. J. P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets. Cardiol. J. 2019, 26 (6), 782-789.
AMA
Gasecka A, Nieuwland R, van der Pol E, et al. P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets. Cardiol J. 2019;26(6):782-789.
DOI
10.5603/CJ.a2018.0045
IEEE
A. Gasecka et al., “P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets,” Cardiol. J., vol. 26, no. 6, pp. 782-789, Nov. 2019.
NLM
Gasecka A, Nieuwland R, van der Pol E, Hajji N, Ćwiek A, Pluta K, et al. P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets. Cardiol J. 2019 Nov;26(6):782-9.
BibTeX     EndNote     RefMan ×
33
Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition) (pdf, 44 MB)
Andrea Cossarizza, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs, Dieter Adam, Sabine Adam-Klages, William W. Agace, Nima Aghaeepour, Mübeccel Akdis, Matthieu Allez, Larissa Nogueira Almeida, Giorgia Alvisi, Graham Anderson, Immanuel Andrä, Francesco Annunziato, Achille Anselmo, Petra Bacher, Cosima T. Baldari, Sudipto Bari, Vincenzo Barnaba, Joana Barros-Martins, Luca Battistini, Wolfgang Bauer, Sabine Baumgart, Nicole Baumgarth, Dirk Baumjohann, Bianka Baying, Mary Bebawy, Burkhard Becher, Wolfgang Beisker, et al.
European Journal of Immunology 49(10), 1457-973 (2019)

Cite

ACS
Cossarizza, A.; Chang, H.; Radbruch, A.; Acs, A.; Adam, D.; Adam-Klages, S.; Agace, W. W.; Aghaeepour, N.; Akdis, M.; Allez, M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019, 49 (10), 1457-1973.
AMA
Cossarizza A, Chang H, Radbruch A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019;49(10):1457-1973.
DOI
10.1002/eji.201970107
IEEE
A. Cossarizza et al., “Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition),” Eur. J. Immunol., vol. 49, no. 10, pp. 1457-1973, Oct.. 2019.
NLM
Cossarizza A, Chang H, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019 Oct.;49(10):1457-973.
BibTeX     EndNote     RefMan ×
32
Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry (pdf, 2 MB)
L. de Rond, S.F.W.M. Libregts, L.G. Rikkert, C.M. Hau, E. van der Pol, R. Nieuwland, T.G. van Leeuwen, and F.A.W. Coumans
Journal of Extracellular Vesicles 8, 1643671 (2019)

Cite

ACS
de Rond, L.; Libregts, S. F. W. M.; Rikkert, L. G.; Hau, C. M.; van der Pol, E.; Nieuwland, R.; van Leeuwen, T. G.; Coumans, F. A. W. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J. Extracell. Vesicles 2019, 8, 1643671.
AMA
de Rond L, Libregts SFWM, Rikkert LG, et al. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J Extracell Vesicles. 2019;8:1643671.
DOI
10.1080/20013078.2019.1643671
IEEE
L. de Rond et al., “Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry,” J. Extracell. Vesicles, vol. 8, pp. 1643671, Jul. 2019.
NLM
de Rond L, Libregts SFWM, Rikkert LG, Hau CM, van der Pol E, Nieuwland R, et al. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J Extracell Vesicles. 2019 Jul;8:1643671.
BibTeX     EndNote     RefMan ×
31
Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis (pdf, 3 MB)
Damiana Pieragostino, Paola Lanuti, Ilaria Cicalini, Maria Concetta Cufaro, Fausta Ciccocioppo, Maurizio Ronci, Pasquale Simeone, Marco Onofrj, Edwin van der Pol, Antonella Fontana, Marco Marchisiob, and Marco Del Boccio
Journal of Proteomics 204, 103403 (2019)

Supplements Journal of Proteomics 204, 103403 (2019)

×Suppl. 1: Supplementary information (docx, 1 MB)
Suppl. 2: Supplementary information (docx, <1 MB)
Suppl. 3: Supplementary information (xlsx, <1 MB)

Cite

ACS
Pieragostino, D.; Lanuti, P.; Cicalini, I.; Cufaro, M. C.; Ciccocioppo, F.; Ronci, M.; Simeone, P.; Onofrj, M.; van der Pol, E.; Fontana, A.; et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J. Proteom. 2019, 204, 103403.
AMA
Pieragostino D, Lanuti P, Cicalini I, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom. 2019;204:103403.
DOI
10.1016/j.jprot.2019.103403
IEEE
D. Pieragostino et al., “Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis,” J. Proteom., vol. 204, pp. 103403, Jul. 2019.
NLM
Pieragostino D, Lanuti P, Cicalini I, Cufaro MC, Ciccocioppo F, Ronci M, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom. 2019 Jul;204:103403.
BibTeX     EndNote     RefMan ×
30
Engineered retroviruses as fluorescent biological reference particles for nanoscale flow cytometry (pdf, external)
Vera A. Tang, Anna K. Fritzsche, Tyler M. Renner, Dylan Burger, Edwin van der Pol, Joanne A. Lannigan, George C. Brittain, Joshua A. Welsh, Jennifer C. Jones, and Marc-André Langlois
BioRxiv, in press.

Cite

ACS
Tang, V. A.; Fritzsche, A. K.; Renner, T. M.; Burger, D.; van der Pol, E.; Lannigan, J. A.; Brittain, G. C.; Welsh, J. A.; Jones, J. C.; Langlois, M. Engineered retroviruses as fluorescent biological reference particles for nanoscale flow cytometry. BioRxiv, in press.
AMA
Tang VA, Fritzsche AK, Renner TM, et al. Engineered retroviruses as fluorescent biological reference particles for nanoscale flow cytometry. BioRxiv. In press.
DOI
10.1101/614461v2
IEEE
V. A. Tang et al., “Engineered retroviruses as fluorescent biological reference particles for nanoscale flow cytometry,” BioRxiv, in press.
NLM
Tang VA, Fritzsche AK, Renner TM, Burger D, van der Pol E, Lannigan JA, et al. Engineered retroviruses as fluorescent biological reference particles for nanoscale flow cytometry. BioRxiv. In press.
BibTeX     EndNote     RefMan ×
29
The generation and use of recombinant extracellular vesicles as biological reference material (pdf, 3 MB)
Edward Geeurickx, Joeri Tulkens, Bert Dhondt, Jan Van Deun, Lien Lippens, Glenn Vergauwen, Elisa Heyrman, Delphine De Sutter, Kris Gevaert, Francis Impens, Ilkka Miinalainen, Pieter-Jan Van Bockstal, Thomas De Beer, Marca H.M. Wauben, Esther N.M. Nolte-'t-Hoen, Katarzyna Bloch, Johannes V. Swinnen, Edwin van der Pol, Rienk Nieuwland, Geert Braems, Nico Callewaert, Pieter Mestdagh, Jo Vandesompele, Hannelore Denys, Sven Eyckerman, Olivier De Wever, and An Hendrix
Nature Communications 10(1), 1-2 (2019)

Cite

ACS
Geeurickx, E.; Tulkens, J.; Dhondt, B.; Van Deun, J.; Lippens, L.; Vergauwen, G.; Heyrman, E.; De Sutter, D.; Gevaert, K.; Impens, F.; et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 2019, 10 (1), 1-12.
AMA
Geeurickx E, Tulkens J, Dhondt B, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019;10(1):1-12.
DOI
10.1038/s41467-019-11182-0
IEEE
E. Geeurickx et al., “The generation and use of recombinant extracellular vesicles as biological reference material,” Nat. Commun., vol. 10, no. 1, pp. 1-12, Jun. 2019.
NLM
Geeurickx E, Tulkens J, Dhondt B, Van Deun J, Lippens L, Vergauwen G, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019 Jun;10(1):1-2.
BibTeX     EndNote     RefMan ×

2018

28
Centrifugation affects the purity of liquid biopsy-based tumor biomarkers (pdf, <1 MB)
Linda G. Rikkert, Edwin van der Pol, Ton G. van Leeuwen, Rienk Nieuwland, and Frank A.W. Coumans
Cytometry Part A 93(12), 1207-12 (2018)

Supplement Cytometry Part A 93(12), 1207-12 (2018)

×Suppl. 1: Supplementary information (pdf, <1 MB)

Cite

ACS
Rikkert, L. G.; van der Pol, E.; van Leeuwen, T. G.; Nieuwland, R.; Coumans, F. A. Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytom. Part. A 2018, 93 (12), 1207-1212.
AMA
Rikkert LG, van der Pol E, van Leeuwen TG, Nieuwland R, Coumans FA. Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytom Part A. 2018;93(12):1207-1212.
DOI
10.1002/cyto.a.23641
IEEE
L. G. Rikkert, E. van der Pol, T. G. van Leeuwen, R. Nieuwland, and F. A. Coumans, “Centrifugation affects the purity of liquid biopsy-based tumor biomarkers,” Cytom. Part. A, vol. 93, no. 12, pp. 1207-1212, Dec. 2018.
NLM
Rikkert LG, van der Pol E, van Leeuwen TG, Nieuwland R, Coumans FA. Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytom Part A. 2018 Dec;93(12):1207-12.
BibTeX     EndNote     RefMan ×
27
Extracellular vesicles in post-infarct ventricular remodelling (pdf, 1 MB)
Aleksandra Gąsecka, Edwin van der Pol, Rienk Nieuwland, and Ewa Stępień
Kardiologia Polska 76(1), 69-6 (2018)

Cite

ACS
Gąsecka, A.; van der Pol, E.; Nieuwland, R.; Stępień, E. Extracellular vesicles in post-infarct ventricular remodelling. Kardiol. Pol. 2018, 76 (1), 69-76.
AMA
Gąsecka A, van der Pol E, Nieuwland R, Stępień E. Extracellular vesicles in post-infarct ventricular remodelling. Kardiol Pol. 2018;76(1):69-76.
DOI
10.5603/KP.a2017.0178
IEEE
A. Gąsecka, E. van der Pol, R. Nieuwland, and E. Stępień, “Extracellular vesicles in post-infarct ventricular remodelling,” Kardiol. Pol., vol. 76, no. 1, pp. 69-76, Oct. 2018.
NLM
Gąsecka A, van der Pol E, Nieuwland R, Stępień E. Extracellular vesicles in post-infarct ventricular remodelling. Kardiol Pol. 2018 Oct;76(1):69-6.
BibTeX     EndNote     RefMan ×
26
Deriving extracellular vesicle size from scatter intensities measured by flow cytometry (pdf, <1 MB)
Leonie de Rond, Frank A.W. Coumans, Rienk Nieuwland, Ton G. van Leeuwen, and Edwin van der Pol
Current Protocols in Cytometry 86(1), e43 (2018)

Cite

ACS
de Rond, L.; Coumans, F. A. W.; Nieuwland, R.; van Leeuwen, T. G.; van der Pol, E. Deriving extracellular vesicle size from scatter intensities measured by flow cytometry. Curr. Protoc. Cytom. 2018, 86 (1), e43.
AMA
de Rond L, Coumans FAW, Nieuwland R, van Leeuwen TG, van der Pol E. Deriving extracellular vesicle size from scatter intensities measured by flow cytometry. Curr Protoc Cytom. 2018;86(1):e43.
DOI
10.1002/cpcy.43
IEEE
L. de Rond, F. A. W. Coumans, R. Nieuwland, T. G. van Leeuwen, and E. van der Pol, “Deriving extracellular vesicle size from scatter intensities measured by flow cytometry,” Curr. Protoc. Cytom., vol. 86, no. 1, pp. e43, Aug. 2018.
NLM
de Rond L, Coumans FAW, Nieuwland R, van Leeuwen TG, van der Pol E. Deriving extracellular vesicle size from scatter intensities measured by flow cytometry. Curr Protoc Cytom. 2018 Aug;86(1):e43.
BibTeX     EndNote     RefMan ×
25
Hollow organosilica beads as reference particles for optical detection of extracellular vesicles (pdf, 1 MB)
Zoltán Varga, Edwin van der Pol, Marcell Pálmai, Raul Garcia-Diez, Christian Gollwitzer, Michael Krumrey, Jean-Luc Fraikin, Aleksandra Gasecka, Najat Hajji, Ton G. van Leeuwen, and Rienk Nieuwland
Journal of Thrombosis and Haemostasis 16(8), 1646-55 (2018)

Supplement Journal of Thrombosis and Haemostasis 16(8), 1646-55 (2018)

×Suppl. 1: Supplementary information (pdf, 1 MB)

Cite

ACS
Varga, Z.; van der Pol, E.; Pálmai, M.; Garcia-Diez, R.; Gollwitzer, C.; Krumrey, M.; Fraikin, J.; Gasecka, A.; Hajji, N.; van Leeuwen, T. G.; et al. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J. Thromb. Haemost. 2018, 16 (8), 1646-1655.
AMA
Varga Z, van der Pol E, Pálmai M, et al. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J Thromb Haemost. 2018;16(8):1646-1655.
DOI
10.1111/jth.14193
IEEE
Z. Varga et al., “Hollow organosilica beads as reference particles for optical detection of extracellular vesicles,” J. Thromb. Haemost., vol. 16, no. 8, pp. 1646-1655, Jun. 2018.
NLM
Varga Z, van der Pol E, Pálmai M, Garcia-Diez R, Gollwitzer C, Krumrey M, et al. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J Thromb Haemost. 2018 Jun;16(8):1646-55.
BibTeX     EndNote     RefMan ×
24
Absolute sizing and label-free identification of extracellular vesicles by flow cytometry (pdf, 1 MB)
Edwin van der Pol, Leonie de Rond, Frank A.W. Coumans, Elmar L. Gool, Anita N. Böing, Auguste Sturk, Rienk Nieuwland, and Ton G. van Leeuwen
Nanomedicine: Nanotechnology, Biology and Medicine 14(3), 801-10 (2018)

Supplement Nanomedicine: Nanotechnology, Biology and Medicine 14(3), 801-10 (2018)

×Suppl. 1: Supplementary tables and figures (pdf, <1 MB)

Cite

ACS
van der Pol, E.; de Rond, L.; Coumans, F. A. W.; Gool, E. L.; Böing, A. N.; Sturk, A.; Nieuwland, R.; van Leeuwen, T. G. Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine 2018, 14 (3), 801-810.
AMA
van der Pol E, de Rond L, Coumans FAW, et al. Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine. 2018;14(3):801-810.
DOI
10.1016/j.nano.2017.12.012
IEEE
E. van der Pol et al., “Absolute sizing and label-free identification of extracellular vesicles by flow cytometry,” Nanomedicine, vol. 14, no. 3, pp. 801-810, Apr. 2018.
NLM
van der Pol E, de Rond L, Coumans FAW, Gool EL, Böing AN, Sturk A, et al. Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine. 2018 Apr;14(3):801-10.
BibTeX     EndNote     RefMan ×
23
Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry (pdf, <1 MB)
Leonie de Rond, Edwin van der Pol, Chi M. Hau, Zoltan Varga, Auguste Sturk, Ton G. van Leeuwen, Rienk Nieuwland, and Frank A.W. Coumans
Clinical Chemistry 64(4), 680-9 (2018)

Cite

ACS
de Rond, L.; van der Pol, E.; Hau, C. M.; Varga, Z.; Sturk, A.; van Leeuwen, T. G.; Nieuwland, R.; Coumans, F. A. W. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin. Chem. 2018, 64 (4), 680-689.
AMA
de Rond L, van der Pol E, Hau CM, et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin Chem. 2018;64(4):680-689.
DOI
10.1373/clinchem.2017.278978
IEEE
L. de Rond et al., “Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry,” Clin. Chem., vol. 64, no. 4, pp. 680-689, Apr. 2018.
NLM
de Rond L, van der Pol E, Hau CM, Varga Z, Sturk A, van Leeuwen TG, et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin Chem. 2018 Apr;64(4):680-9.
BibTeX     EndNote     RefMan ×
22
Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation (pdf, 1 MB)
Edwin van der Pol, Auguste Sturk, Ton van Leeuwen, Rienk Nieuwland, Frank Coumans, and STH-SSC-VB Working Group
Journal of Thrombosis and Haemostasis 16(6), 1236-45 (2018)

Supplement Journal of Thrombosis and Haemostasis 16(6), 1236-45 (2018)

×Suppl. 1: Supplementary information (pdf, 3 MB)

Cite

ACS
van der Pol, E.; Sturk, A.; van Leeuwen, T.; Nieuwland, R.; Coumans, F.; , S. W. G. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost. 2018, 16 (6), 1236-1245.
AMA
van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F, SWG. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost. 2018;16(6):1236-1245.
DOI
10.1111/jth.14009
IEEE
E. van der Pol, A. Sturk, T. van Leeuwen, R. Nieuwland, F. Coumans, and S. W. G. , “Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation,” J. Thromb. Haemost., vol. 16, no. 6, pp. 1236-1245, Mar. 2018.
NLM
van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F, SWG. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost. 2018 Mar;16(6):1236-45.
BibTeX     EndNote     RefMan ×

2017

21
From platelet dust to gold dust: physiological importance and detection of platelet microvesicles (pdf, <1 MB)
Edwin van der Pol, and Paul Harrison
Platelets 28(3), 211-3 (2017)

Cite

ACS
van der Pol, E.; Harrison, P. From platelet dust to gold dust: physiological importance and detection of platelet microvesicles. Platelets 2017, 28 (3), 211-213.
AMA
van der Pol E, Harrison P. From platelet dust to gold dust: physiological importance and detection of platelet microvesicles. Platelets. 2017;28(3):211-213.
DOI
10.1080/09537104.2017.1282781
IEEE
E. van der Pol, and P. Harrison, “From platelet dust to gold dust: physiological importance and detection of platelet microvesicles,” Platelets, vol. 28, no. 3, pp. 211-213, May. 2017.
NLM
van der Pol E, Harrison P. From platelet dust to gold dust: physiological importance and detection of platelet microvesicles. Platelets. 2017 May;28(3):211-3.
BibTeX     EndNote     RefMan ×
20
Methodological guidelines to study extracellular vesicles (pdf, 1 MB)
Frank A.W. Coumans, Alain R. Brisson, Edit I. Buzas, Françoise Dignat-George, Esther E.E. Drees, Samir El-Andaloussi, Costanza Emanueli, Aleksandra Gasecka, An Hendrix, Andrew F. Hill, Romaric Lacroix, Yi Lee, Ton G. van Leeuwen, Nigel Mackman, Imre Mäger, John P. Nolan, Edwin van der Pol, D. Michiel Pegtel, Susmita Sahoo, Pia R.M. Siljander, Guus Sturk, Olivier de Wever, and Rienk Nieuwland
Circulation Research 120(10), 1632-48 (2017)

Cite

ACS
Coumans, F. A. W.; Brisson, A. R.; Buzas, E. I.; Dignat-George, F.; Drees, E. E. E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A. F.; et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 2017, 120 (10), 1632-1648.
AMA
Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632-1648.
DOI
10.1161/CIRCRESAHA.117.309417
IEEE
F. A. W. Coumans et al., “Methodological guidelines to study extracellular vesicles,” Circ. Res., vol. 120, no. 10, pp. 1632-1648, May. 2017.
NLM
Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017 May;120(10):1632-48.
BibTeX     EndNote     RefMan ×
19
Biological reference materials for extracellular vesicle studies (pdf, 2 MB)
Sami Valkonen, Edwin van der Pol, Anita Böing, Yuana Yuana, Marjo Yliperttula, Rienk Nieuwland, Saara Laitinen, and Pia R.M. Siljander
European Journal of Pharmaceutical Sciences 98, 4-6 (2017)

Supplement European Journal of Pharmaceutical Sciences 98, 4-6 (2017)

×Suppl. 1: Questionnaire and supplementary figure 1 (pdf, <1 MB)

Cite

ACS
Valkonen, S.; van der Pol, E.; Böing, A.; Yuana, Y.; Yliperttula, M.; Nieuwland, R.; Laitinen, S.; Siljander, P. R. M. Biological reference materials for extracellular vesicle studies. Eur. J. Pharm. Sci. 2017, 98, 4-16.
AMA
Valkonen S, van der Pol E, Böing A, et al. Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci. 2017;98:4-16.
DOI
10.1016/j.ejps.2016.09.008
IEEE
S. Valkonen et al., “Biological reference materials for extracellular vesicle studies,” Eur. J. Pharm. Sci., vol. 98, pp. 4-16, Feb. 2017.
NLM
Valkonen S, van der Pol E, Böing A, Yuana Y, Yliperttula M, Nieuwland R, et al. Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci. 2017 Feb;98:4-6.
BibTeX     EndNote     RefMan ×

2016

18
Wound scabs protect regenerating tissue against harmful ultraviolet radiation (pdf, <1 MB)
Edwin van der Pol, Yvo D. Mudde, Frank A.W. Coumans, Ton G. van Leeuwen, Auguste Sturk, and Rienk Nieuwland
Medical Hypotheses 96, 39-1 (2016)

Cite

ACS
van der Pol, E.; Mudde, Y. D.; Coumans, F. A. W.; van Leeuwen, T. G.; Sturk, A.; Nieuwland, R. Wound scabs protect regenerating tissue against harmful ultraviolet radiation. Medical Hypotheses 2016, 96, 39-41.
AMA
van der Pol E, Mudde YD, Coumans FAW, van Leeuwen TG, Sturk A, Nieuwland R. Wound scabs protect regenerating tissue against harmful ultraviolet radiation. Medical Hypotheses. 2016;96:39-41.
DOI
10.1016/j.mehy.2016.09.011
IEEE
E. van der Pol, Y. D. Mudde, F. A. W. Coumans, T. G. van Leeuwen, A. Sturk, and R. Nieuwland, “Wound scabs protect regenerating tissue against harmful ultraviolet radiation,” Medical Hypotheses, vol. 96, pp. 39-41, Nov. 2016.
NLM
van der Pol E, Mudde YD, Coumans FAW, van Leeuwen TG, Sturk A, Nieuwland R. Wound scabs protect regenerating tissue against harmful ultraviolet radiation. Medical Hypotheses. 2016 Nov;96:39-1.
BibTeX     EndNote     RefMan ×
17
Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles (pdf, <1 MB)
Edwin van der Pol, A.N. Böing, Elmar L. Gool, and Rienk Nieuwland
Journal of Thrombosis and Haemostasis 14(1), 48-6 (2016)

Supplement Journal of Thrombosis and Haemostasis 14(1), 48-6 (2016)

×Cor. 1: Corrigendum related to density gradient ultracentrifugation statements (pdf, <1 MB)

Cite

ACS
van der Pol, E.; Böing, A. N.; Gool, E. L.; Nieuwland, R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J. Thromb. Haemost. 2016, 14 (1), 48-56.
AMA
van der Pol E, Böing AN, Gool EL, Nieuwland R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016;14(1):48-56.
DOI
10.1111/jth.13190
IEEE
E. van der Pol, A. N. Böing, E. L. Gool, and R. Nieuwland, “Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles,” J. Thromb. Haemost., vol. 14, no. 1, pp. 48-56, Nov. 2016.
NLM
van der Pol E, Böing AN, Gool EL, Nieuwland R. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016 Nov;14(1):48-6.
BibTeX     EndNote     RefMan ×
16
Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (pdf, 3 MB)
Paul Cernohorsky, Sanne M. Jansen, Daniel M. de Bruin, Edwin van der Pol, Cemile D. Savci-Heijink, Simon D. Strackee, Dirk J. Faber, and Ton G. van Leeuwen
IEEE Journal of Selected Topics in Quantum Electronics 22(3), 203-9 (2016)

Supplement IEEE Journal of Selected Topics in Quantum Electronics 22(3), 203-9 (2016)

×Suppl. 1: Model for double microlens array in mercury based 10x epi fluorescence microscope (pdf, <1 MB)

Cite

ACS
Cernohorsky, P.; Jansen, S. M.; de Bruin, D. M.; van der Pol, E.; Savci-Heijink, C. D.; Strackee, S. D.; Faber, D. J.; van Leeuwen, T. G. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology. IEEE J. Sel. Top. Quantum Electron 2016, 22 (3), 203-209.
AMA
Cernohorsky P, Jansen SM, de Bruin DM, et al. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology. IEEE J Sel Top. 2016;22(3):203-209.
DOI
10.1109/JSTQE.2015.2499958
IEEE
P. Cernohorsky et al., “Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology,” IEEE J. Sel. Top. Quantum Electron, vol. 22, no. 3, pp. 203-209, May. 2016.
NLM
Cernohorsky P, Jansen SM, de Bruin DM, van der Pol E, Savci-Heijink CD, Strackee SD, et al. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology. IEEE J Sel Top. 2016 May;22(3):203-9.
BibTeX     EndNote     RefMan ×
15
Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements (pdf, 2 MB)
Anaïs Nicolet, Felix Meli, Edwin van der Pol, Yuana Yuana, Christian Gollwitzer, Michael Krumrey, Petr Cizmar, Egbert Buhr, Jasmine Pétry, Noham Sebaihi, Bert de Boeck, Vincent Fokkema, Rob Bergmans, and Rienk Nieuwland
Measurement Science and Technology 27(3), 035701 (2016)

Cite

ACS
Nicolet, A.; Meli, F.; van der Pol, E.; Yuana, Y.; Gollwitzer, C.; Krumrey, M.; Cizmar, P.; Buhr, E.; Pétry, J.; Sebaihi, N.; et al. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Meas. Sci. Technol. 2016, 27 (3), 035701.
AMA
Nicolet A, Meli F, van der Pol E, et al. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Meas Sci Technol. 2016;27(3):035701.
DOI
10.1088/0957-0233/27/3/035701
IEEE
A. Nicolet et al., “Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements,” Meas. Sci. Technol., vol. 27, no. 3, pp. 035701, Feb. 2016.
NLM
Nicolet A, Meli F, van der Pol E, Yuana Y, Gollwitzer C, Krumrey M, et al. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Meas Sci Technol. 2016 Feb;27(3):035701.
BibTeX     EndNote     RefMan ×

2015

14
Handling and storage of human body fluids for analysis of extracellular vesicles (pdf, 4 MB)
Yuana Yuana, Anita N. Böing, Anita E. Grootemaat, Edwin van der Pol, Chi M. Hau, Petr Cizmar, Egbert Buhr, Auguste Sturk, and Rienk Nieuwland
Journal of Extracellular Vesicles 4, 29260 (2015)

Cite

ACS
Yuana, Y.; Böing, A. N.; Grootemaat, A. E.; van der Pol, E.; Hau, C. M.; Cizmar, P.; Buhr, E.; Sturk, A.; Nieuwland, R. Handling and storage of human body fluids for analysis of extracellular vesicles. J. Extracell. Vesicles 2015, 4, 29260.
AMA
Yuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015;4:29260.
DOI
10.3402/jev.v4.29260
IEEE
Y. Yuana et al., “Handling and storage of human body fluids for analysis of extracellular vesicles,” J. Extracell. Vesicles, vol. 4, pp. 29260, Nov. 2015.
NLM
Yuana Y, Böing AN, Grootemaat AE, van der Pol E, Hau CM, Cizmar P, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015 Nov;4:29260.
BibTeX     EndNote     RefMan ×

2014

13
Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing (pdf, 1 MB)
Frank A.W. Coumans, Edwin van der Pol, Anita N. Böing, Najat Hajji, Guus Sturk, Ton G. van Leeuwen, and Rienk Nieuwland
Journal of Extracellular Vesicles 3, 25922 (2014)

Cite

ACS
Coumans, F. A. W.; van der Pol, E.; Böing, A. N.; Hajji, N.; Sturk, G.; van Leeuwen, T. G.; Nieuwland, R. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J. Extracell. Vesicles 2014, 3, 25922.
AMA
Coumans FAW, van der Pol E, Böing AN, et al. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles. 2014;3:25922.
DOI
10.3402/jev.v3.25922
IEEE
F. A. W. Coumans et al., “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles, vol. 3, pp. 25922, Dec. 2014.
NLM
Coumans FAW, van der Pol E, Böing AN, Hajji N, Sturk G, van Leeuwen TG, et al. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles. 2014 Dec;3:25922.
BibTeX     EndNote     RefMan ×
12
Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis (pdf, 2 MB)
Edwin van der Pol, Frank A.W. Coumans, Auguste Sturk, Rienk Nieuwland, and Ton G. van Leeuwen
Nano Letters 14(11), 6195-201 (2014)

Cite

ACS
van der Pol, E.; Coumans, F. A. W.; Sturk, A.; Nieuwland, R.; van Leeuwen, T. G. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett. 2014, 14 (11), 6195-6201.
AMA
van der Pol E, Coumans FAW, Sturk A, Nieuwland R, van Leeuwen TG. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett. 2014;14(11):6195-6201.
DOI
10.1021/nl503371p
IEEE
E. van der Pol, F. A. W. Coumans, A. Sturk, R. Nieuwland, and T. G. van Leeuwen, “Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis,” Nano Lett., vol. 14, no. 11, pp. 6195-6201, Sep. 2014.
NLM
van der Pol E, Coumans FAW, Sturk A, Nieuwland R, van Leeuwen TG. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett. 2014 Sep;14(11):6195-201.
BibTeX     EndNote     RefMan ×
11
Single-step isolation of extracellular vesicles by size-exclusion chromatography (pdf, 2 MB)
Anita N. Böing, Edwin van der Pol, Anita E. Grootemaat, Frank A.W. Coumans, Auguste Sturk, and Rienk Nieuwland
Journal of Extracellular Vesicles 3, 23430 (2014)

Supplement Journal of Extracellular Vesicles 3, 23430 (2014)

×Suppl. 1: Presence of CD61-exposing vesicles per fraction (pdf, <1 MB)

Cite

ACS
Böing, A. N.; van der Pol, E.; Grootemaat, A. E.; Coumans, F. A. W.; Sturk, A.; Nieuwland, R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 2014, 3, 23430.
AMA
Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3:23430.
DOI
10.3402/jev.v3.23430
IEEE
A. N. Böing, E. van der Pol, A. E. Grootemaat, F. A. W. Coumans, A. Sturk, and R. Nieuwland, “Single-step isolation of extracellular vesicles by size-exclusion chromatography,” J. Extracell. Vesicles, vol. 3, pp. 23430, Sep. 2014.
NLM
Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014 Sep;3:23430.
BibTeX     EndNote     RefMan ×
10
Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing (pdf, <1 MB)
Edwin van der Pol, Frank A.W. Coumans, Anita E. Grootemaat, Chris Gardiner, Ian L. Sargent, Paul Harrison, Auguste Sturk, Ton G. van Leeuwen, and Rienk Nieuwland
Journal of Thrombosis and Haemostasis 12(7), 1182- (2014)

Supplement Journal of Thrombosis and Haemostasis 12(7), 1182- (2014)

×Suppl. 1: Methods and mathematical function to fit the particle size distribution of vesicles (pdf, 1 MB)

Cite

ACS
van der Pol, E.; Coumans, F. A. W.; Grootemaat, A. E.; Gardiner, C.; Sargent, I. L.; Harrison, P.; Sturk, A.; van Leeuwen, T. G.; Nieuwland, R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014, 12 (7), 1182-1192.
AMA
van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182-1192.
DOI
10.1111/jth.12602
IEEE
E. van der Pol et al., “Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing,” J. Thromb. Haemost., vol. 12, no. 7, pp. 1182-1192, May. 2014.
NLM
van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014 May;12(7):1182-.
BibTeX     EndNote     RefMan ×
09
Towards traceable size determination of extracellular vesicles (pdf, 2 MB)
Zoltán Varga, Yuana Yuana, Anita E. Grootemaat, Edwin van der Pol, Christian Gollwitzer, Michael Krumrey, and Rienk Nieuwland
Journal of Extracellular Vesicles 3, 23298 (2014)

Cite

ACS
Varga, Z.; Yuana, Y.; Grootemaat, A. E.; van der Pol, E.; Gollwitzer, C.; Krumrey, M.; Nieuwland, R. Towards traceable size determination of extracellular vesicles. J. Extracell. Vesicles 2014, 3, 23298.
AMA
Varga Z, Yuana Y, Grootemaat AE, et al. Towards traceable size determination of extracellular vesicles. J Extracell Vesicles. 2014;3:23298.
DOI
10.3402/jev.v3.23298
IEEE
Z. Varga et al., “Towards traceable size determination of extracellular vesicles,” J. Extracell. Vesicles, vol. 3, pp. 23298, Feb. 2014.
NLM
Varga Z, Yuana Y, Grootemaat AE, van der Pol E, Gollwitzer C, Krumrey M, et al. Towards traceable size determination of extracellular vesicles. J Extracell Vesicles. 2014 Feb;3:23298.
BibTeX     EndNote     RefMan ×

2013

08
Dependent and multiple scattering in transmission and backscattering optical coherence tomography (pdf, 1 MB)
V. Duc Nguyen, Dirk J. Faber, Edwin van der Pol, Ton G. van Leeuwen, and Jeroen Kalkman
Optics Express 21(24), 29145-56 (2013)

Cite

ACS
Nguyen, V. D.; Faber, D. J.; van der Pol, E.; van Leeuwen, T. G.; Kalkman, J. Dependent and multiple scattering in transmission and backscattering optical coherence tomography. Opt. Expr. 2013, 21 (24), 29145-29156.
AMA
Nguyen VD, Faber DJ, van der Pol E, van Leeuwen TG, Kalkman J. Dependent and multiple scattering in transmission and backscattering optical coherence tomography. Opt Expr. 2013;21(24):29145-29156.
DOI
10.1364/OE.21.029145
IEEE
V. D. Nguyen, D. J. Faber, E. van der Pol, T. G. van Leeuwen, and J. Kalkman, “Dependent and multiple scattering in transmission and backscattering optical coherence tomography,” Opt. Expr., vol. 21, no. 24, pp. 29145-29156, Nov. 2013.
NLM
Nguyen VD, Faber DJ, van der Pol E, van Leeuwen TG, Kalkman J. Dependent and multiple scattering in transmission and backscattering optical coherence tomography. Opt Expr. 2013 Nov;21(24):29145-56.
BibTeX     EndNote     RefMan ×
07
Innovation in detection of microparticles and exosomes (pdf, 1 MB)
Edwin van der Pol, Frank Coumans, Zoltán Varga, Michael Krumrey, and Rienk Nieuwland
Journal of Thrombosis and Haemostasis 11(Suppl. 1), 36-5 (2013)

Cite

ACS
van der Pol, E.; Coumans, F.; Varga, Z.; Krumrey, M.; Nieuwland, R. Innovation in detection of microparticles and exosomes. J. Thromb. Haemost. 2013, 11 (Suppl. 1), 36-45.
AMA
van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost. 2013;11(Suppl. 1):36-45.
DOI
10.1111/jth.12254
IEEE
E. van der Pol, F. Coumans, Z. Varga, M. Krumrey, and R. Nieuwland, “Innovation in detection of microparticles and exosomes,” J. Thromb. Haemost., vol. 11, no. Suppl. 1, pp. 36-45, Jun. 2013.
NLM
van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost. 2013 Jun;11(Suppl. 1):36-5.
BibTeX     EndNote     RefMan ×

2012

06
Classification, functions, and clinical relevance of extracellular vesicles (pdf, 3 MB)
Edwin van der Pol, Anita N. Böing, Paul Harrison, Auguste Sturk, and Rienk Nieuwland
Pharmacological Reviews 64(3), 676-05 (2012)

Cite

ACS
van der Pol, E.; Böing, A. N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012, 64 (3), 676-705.
AMA
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676-705.
DOI
10.1124/pr.112.005983
IEEE
E. van der Pol, A. N. Böing, P. Harrison, A. Sturk, and R. Nieuwland, “Classification, functions, and clinical relevance of extracellular vesicles,” Pharmacol. Rev., vol. 64, no. 3, pp. 676-705, Jul. 2012.
NLM
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012 Jul;64(3):676-05.
BibTeX     EndNote     RefMan ×
05
Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation (pdf, 1 MB)
Jeroen van den Akker, Angela van Weert, Gijs Afink, Erik N.T.P. Bakker, Edwin van der Pol, Anita N. Böing, Rienk Nieuwland, and Ed van Bavel
Amino Acids 42(2-3), 961-73 (2012)

Supplement Amino Acids 42(2-3), 961-73 (2012)

×Suppl. 1: Materials, methods, and results (pdf, <1 MB)

Cite

ACS
van den Akker, J.; van Weert, A.; Afink, G.; Bakker, E. N. T. P.; van der Pol, E.; Böing, A. N.; Nieuwland, R.; van Bavel, E. Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids 2012, 42 (2-3), 961-973.
AMA
van den Akker J, van Weert A, Afink G, et al. Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids. 2012;42(2-3):961-973.
DOI
10.1007/s00726-011-1010-3
IEEE
J. van den Akker et al., “Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation,” Amino Acids, vol. 42, no. 2-3, pp. 961-973, Jun. 2012.
NLM
van den Akker J, van Weert A, Afink G, Bakker ENTP, van der Pol E, Böing AN, et al. Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids. 2012 Jun;42(2-3):961-73.
BibTeX     EndNote     RefMan ×
04
Flat-top illumination profile in an epi-fluorescence microscope by dual micro lens arrays (pdf, 2 MB)
Frank A.W. Coumans, Edwin van der Pol, and Léon W.M.M. Terstappen
Cytometry Part A 81(4), 324-31 (2012)

Cite

ACS
Coumans, F. A. W.; van der Pol, E.; Terstappen, L. W. M. M. Flat-top illumination profile in an epi-fluorescence microscope by dual micro lens arrays. Cytom. Part. A 2012, 81 (4), 324-331.
AMA
Coumans FAW, van der Pol E, Terstappen LWMM. Flat-top illumination profile in an epi-fluorescence microscope by dual micro lens arrays. Cytom Part A. 2012;81(4):324-331.
DOI
10.1002/cyto.a.22029
IEEE
F. A. W. Coumans, E. van der Pol, and L. W. M. M. Terstappen, “Flat-top illumination profile in an epi-fluorescence microscope by dual micro lens arrays,” Cytom. Part. A, vol. 81, no. 4, pp. 324-331, Mar. 2012.
NLM
Coumans FAW, van der Pol E, Terstappen LWMM. Flat-top illumination profile in an epi-fluorescence microscope by dual micro lens arrays. Cytom Part A. 2012 Mar;81(4):324-31.
BibTeX     EndNote     RefMan ×
03
Single vs. swarm detection of microparticles and exosomes by flow cytometry (pdf, 1 MB)
Edwin van der pol, Martin J.C. van Gemert, Auguste Sturk, Rienk Nieuwland, and Ton G. van Leeuwen
Journal of Thrombosis and Haemostasis 10(5), 919-30 (2012)

Cite

ACS
van der pol, E.; van Gemert, M. J. C.; Sturk, A.; Nieuwland, R.; van Leeuwen, T. G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012, 10 (5), 919-930.
AMA
van der pol E, van Gemert MJC, Sturk A, Nieuwland R, van Leeuwen TG. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012;10(5):919-930.
DOI
10.1111/j.1538-7836.2012.04683.x
IEEE
E. van der pol, M. J. C. van Gemert, A. Sturk, R. Nieuwland, and T. G. van Leeuwen, “Single vs. swarm detection of microparticles and exosomes by flow cytometry,” J. Thromb. Haemost., vol. 10, no. 5, pp. 919-930, Feb. 2012.
NLM
van der pol E, van Gemert MJC, Sturk A, Nieuwland R, van Leeuwen TG. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012 Feb;10(5):919-30.
BibTeX     EndNote     RefMan ×

2010

02
Optical and non-optical methods for detection and characterization of microparticles and exosomes (pdf, <1 MB)
Edwin van der Pol, Alfons G. Hoekstra, Auguste Sturk, Cornelis Otto, Ton G. Van Leeuwen, and Rienk Nieuwland
Journal of Thrombosis and Haemostasis 8(12), 2596-607 (2010)

Cite

ACS
van der Pol, E.; Hoekstra, A. G.; Sturk, A.; Otto, C.; Van Leeuwen, T. G.; Nieuwland, R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 2010, 8 (12), 2596-2607.
AMA
van der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596-2607.
DOI
10.1111/j.1538-7836.2010.04074.x
IEEE
E. van der Pol, A. G. Hoekstra, A. Sturk, C. Otto, T. G. Van Leeuwen, and R. Nieuwland, “Optical and non-optical methods for detection and characterization of microparticles and exosomes,” J. Thromb. Haemost., vol. 8, no. 12, pp. 2596-2607, Dec. 2010.
NLM
van der Pol E, Hoekstra AG, Sturk A, Otto C, Van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010 Dec;8(12):2596-607.
BibTeX     EndNote     RefMan ×
01
Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam (pdf, <1 MB)
Georgios Ctistis, Alex Hartsuiker, Edwin van der Pol, Julien Claudon, Willem L. Vos, and Jean-Michel Gérard
Physical Review B 82(19), 195330 (2010)

Cite

ACS
Ctistis, G.; Hartsuiker, A.; van der Pol, E.; Claudon, J.; Vos, W. L.; Gérard, J. Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. Phys. Rev. B 2010, 82 (19), 195330.
AMA
Ctistis G, Hartsuiker A, van der Pol E, Claudon J, Vos WL, Gérard J. Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. Phys Rev B. 2010;82(19):195330.
DOI
10.1103/PhysRevB.82.195330
IEEE
G. Ctistis, A. Hartsuiker, E. van der Pol, J. Claudon, W. L. Vos, and J. Gérard, “Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam,” Phys. Rev. B, vol. 82, no. 19, pp. 195330, Nov. 2010.
NLM
Ctistis G, Hartsuiker A, van der Pol E, Claudon J, Vos WL, Gérard J. Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. Phys Rev B. 2010 Nov;82(19):195330.
BibTeX     EndNote     RefMan ×